16.5
 Parallel Circuits

Parallel Circuits

In a parallel circuit having three lamps, each electric device has its own path from one terminal of the battery to the other.

There are separate pathways for current, one through each lamp.

Parallel Circuits

In contrast to a series circuit, the parallel circuit is completed whether all, two, or only one lamp is lit.

A break in any one path does not interrupt the flow of charge in the other paths.

Parallel Circuits

In this parallel circuit, a 9-volt battery provides 9 volts across each activated lamp. (Note the open switch in the lower branch.)

Parallel Circuits

What happens if one device in a parallel circuit fails?

A break in any one path does not interrupt the flow of current in the other paths.

Resistance in a Parallel Circuit

The reciprocal of the total resistance is equal to the sum of the reciprocals of individual resistance.

$$
\frac{1}{\mathbf{R}_{\mathrm{eq}}}=\frac{1}{\mathbf{R}_{1}}+\frac{1}{\mathbf{R}_{2}}+\frac{1}{\mathbf{R}_{3}}+\ldots
$$

Resistance in a Parallel Circuit

Example \#1
What is the equivalent resistance of the following circuit?

Resistance in a Parallel Circuit

Example \#2:
What is the equivalent resistance of the following:

Voltage in a Parallel Circuit

Each device connects the same two points A and B of the circuit. The voltage is therefore the same across each device.
$\left(V_{T}=V_{1}=V_{2}=V_{3}\right)$

Current in a Parallel Circuit

The total current divides among the parallel branches

- The total current is the sum of the currents in its branches.

Current in a Parallel Circuit

The main current is equal to the sum of the sub-currents
$\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}$

Parallel Circuits

CONEEPT
 How are voltage, current and resistance calculated in a parallel circuit?

- The voltage is the same across each device.
- The total current divides among the parallel branches.
- The total current is the sum of the currents in its branches.
- The reciprocal of the total resistance is equal to the sum of the reciprocals of individual resistance.

Parallel Circuits Assessment Questions

Example \#3:
Use a VIRP table to calculate the values for the circuit below.

Parallel Circuits Assessment Questions

Example \#3

VIRP Table				
	V	I	R	P
R1				
R2				
R3				
Total				

Parallel Circuits Assessment Questions

Example \#4:

A 10-volt supply is supplied to three resistors of that are connected in parallel. Calculate:
a. The combined resistance
b. The total current flowing in circuit
c. The current in the $2-\mathrm{k} \Omega$ resistor
d. The power in the $3-\mathrm{k} \Omega$ resistor

Parallel Circuits Assessment Questions

Example \#4:

VIRP Table				
	V	I	\mathbf{R}	P
R1				
R2				
R3				
Total				

