11.6 Simple Machines

Lever Family (Levers, Wheel & Axle, Pulleys)

Simple Machines Levers

Levers

- A board that pivots on a fixed point.
- A lever is a simple machine used for magnifying a force.
- There are 3 classes of levers.

Examples:

- Teeter-totter
- Balance or Scale
- Shovel.

Levers

All levers have three parts:

- Resistance Force, Output Force or Load (F_w)
 What you are trying to move or lift.
- 2. Applied Force or Input Force (F_A)

 The work done on the lever.
- 3. Fulcrum or Pivot Point

Levers

All levers have three parts:

1st Class Lever

1st Class Lever

- The Fulcrum is located between the Applied Force (Input) and the Resistance Force (Output).
- The applied force and the resistance force move in opposite directions.
- The applied force pushes down in order to lift the resistance or load
- Think of a see-saw. One end will lift an object up just as far as the other end is pushed down.

1st Class Lever

Mechanical Advantage:

I.M.A: = d/h

 $A.M.A: = F_W / F_A$

1st Class Lever Examples

Examples of 1st class levers:

- 1. Pliers, Scissors
- 2. Triple beam balance
- 3. Hedge/Pruning shears
- 4. Pry-Bar, Crow Bar
- 5. Eyelash Curler

2nd Class Lever

2nd Class Lever

- The resistance force is between the applied force and the fulcrum.
- The fulcrum is at one end of the lever.
- The fulcrum is usually closer to the resistance force.
- Think of a wheelbarrow. The long handles of a wheel barrow are really the long arms of a lever.

2nd Class Lever

2nd Class Lever Examples

Examples of 2nd class levers:

- Wheelbarrow
- 2. Nutcracker
- 3. Handle on fingernail clippers
- 4. Gas Pump Handle
- 5. Pop Bottle Opener

3rd Class Lever

- The applied force is between the resistance load and the fulcrum.
- Think of a fishing pole. When the pole is given a tug, one end stays still but the other end flips in the air catching the fish.

3rd Class Lever

Mechanical Advantage:

I.M.A: = d/h

 $A.M.A: = F_W / F_A$

3rd Class Lever Examples

Examples of 3rd class levers:

- 1. Shovel
- 2. Human Forearm
- 3. Mouse Trap
- 4. Fishing Pole

Lever Example Problems

Example #1

A 250 N crate is picked up by pushing on a lever with 50 N of force. Find the AMA of the lever.

Example #2

A lever system with 80% mechanical efficiency gives an output work force of 10 N. What is the input force?

Lever Example Problems

Example #3

To pry a nail out of a wall, you can apply a force of 50 N to the hammer. The hammer applies a force of 650 N to the nail. What is the mechanical advantage of the hammer?

Example #4

You do 42 J of work with scissors. If the scissors do 40 J of work, what is the efficiency of the scissors?

Simple Machines Wheel and Axle

Wheel and Axle

The Wheel & axle is a modified lever:

 The center of the axle acts as a fulcrum – making the wheel a lever that rotates around in a circle.

 The axle is a rod that goes through the wheel which allows the wheel to turn.

wheel

axle

2 Configurations:

- 1. Wheel drives the axle
- 2. Axle drives the wheel

Wheel and Axle

Examples of Wheel & Axles:

- Screwdriver (Wheel driving axle)
- 2. Door Knob (Wheel driving axle)
- 3. Windmill (Wheel driving axle)
- 4. Ceiling Fan (Axle drives wheel)
- 5. Rear Bike Wheel (Axle drives wheel)

Wheel and Axle

Mechanical Advantage:

I.M.A: =
$$R_{WHEEL} / r_{AXLE}$$

A.M.A: = F_{OUT} / F_{IN}

R_{WHFFI} = Radius of the Wheel

 r_{axle} = Radius of the axle

Wheel and Axle Example Problems

Example #1

You do 1260 J of work with a wheel and axle. If the wheel and axle does 1200 J of work, what is the efficiency of the wheel and axel?

Example #2

A wheel and axle system has a mechanical advantage of 3 and an axle radius of 30 cm. What is the radius of the wheel? (90 cm)

Wheel and Axle Example Problems

Example #3

The radius of a wheel is 100 cm and that of its axle is 50 cm. What is its mechanical advantage?

Example #4

An industrial water shutoff valve is designed to operate with 40 lb of effort force. The valve will encounter 250 lb of resistance force applied to a 1.25 in. diameter axle.

- a. Sketch the wheel and axle system described above
- b. What is the required actual mechanical advantage of the system
- c. If the system is frictionless, what is the diameter of the wheel?

Simple Machines Pulleys

A simple machine made with a rope, belt or chain wrapped around a grooved wheel.

Two types of pulleys:

- Fixed (Stationary, attached to support)
- 2. Moveable (Pulley moves along the rope)

Fixed Pulley

Fixed Pulley:

- Wheel attached to surface.
- Changes the direction of the applied force (does not multiply force).
- NO mechanical advantage same amount of force is required.

Moveable Pulley

Movable Pulley:

- Pulley moves along the rope.
- Wheel supports the load.
- Effort is in the same direction as movement.
- Reduces the forces needed to move an object.

Combined Pulleys

Combined Pulleys:

- A combination of fixed and movable pulleys.
- Has at least two wheels.
- The more complex the pulley, the applied force (effort)
 needed to move the object decreases.

Mechanical Advantage:

$$A.M.A = F_W / F_A$$

The I.M.A can be determined by counting the number of upward supporting ropes which hold up the resistance. Only count the rope if you are pulling up.

Mechanical Advantage:

If the # of strands are not shown, use the following formula:

I.M.A.=d/h

of movement

Mechanical Advantage:

What is the I.M.A of each pulley system?

Pulley Example Problems

Example #1

Carmela is using a pulley to lift an 100 pound anvil (Why an anvil? We don't know).

- a. What is the IMA of this pulley system?
- b. If Carmela has to exert 60 pounds to lift the anvil, what is the AMA?
- c. What is the efficiency?

Pulley Example Problems

Example #2

Susie is using a pulley to lift another anvil.

- a. What is the I.M.A. of this pulley system?
- b. If Katie has to exert 120 pounds, what is the AMA?
- c. What is the efficiency?
- d. Why bother using this type of pulley?

